If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60x=1.5x^2
We move all terms to the left:
60x-(1.5x^2)=0
We get rid of parentheses
-1.5x^2+60x=0
a = -1.5; b = 60; c = 0;
Δ = b2-4ac
Δ = 602-4·(-1.5)·0
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-60}{2*-1.5}=\frac{-120}{-3} =+40 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+60}{2*-1.5}=\frac{0}{-3} =0 $
| -4+4+5x=14 | | x*0.06=100 | | (56+x)/7= | | -4x+4+-5=14 | | 3x-15=x11 | | 4(3x+3)=30 | | 0.67(x-2)=0.75 | | 12(2x-14)=36 | | t•7=-9 | | 0.5(x+8)=12 | | 2(x+3)=(4x-5) | | 52.375=-84+x | | 5.25=4.6666666667+x | | 10x-23=204 | | 34=4(x+7) | | 100=3(19-x) | | 14x+46=210 | | 23-x=204 | | 9(y+6)=5(y+10) | | 134=14(x+38) | | 7^x^2=7^3x+10 | | s+12=17;5,6,7 | | Y=5x^2+1.5x+115 | | M2-2m+2=0 | | 25a=125 | | -7(-3x-10)=7 | | 36+2x=360 | | 5k+5=10k+9 | | 5z−2.3=5.2z−2.56 | | 4(1x+4)=7 | | 27=5x+7x-9 | | 10=40÷7x |